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a b s t r a c t 

Machine learning analysis of longitudinal neuroimaging data is typically based on supervised learning, 

which requires large number of ground-truth labels to be informative. As ground-truth labels are often 

missing or expensive to obtain in neuroscience, we avoid them in our analysis by combing factor disen- 

tanglement with self-supervised learning to identify changes and consistencies across the multiple MRIs 

acquired of each individual over time. Specifically, we propose a new definition of disentanglement by 

formulating a multivariate mapping between factors (e.g., brain age ) associated with an MRI and a latent 

image representation. Then, factors that evolve across acquisitions of longitudinal sequences are disentan- 

gled from that mapping by self-supervised learning in such a way that changes in a single factor induce 

change along one direction in the representation space. We implement this model, named Longitudinal 

Self-Supervised Learning (LSSL), via a standard autoencoding structure with a cosine loss to disentangle 

brain age from the image representation. We apply LSSL to two longitudinal neuroimaging studies to 

highlight its strength in extracting the brain-age information from MRI and revealing informative char- 

acteristics associated with neurodegenerative and neuropsychological disorders. Moreover, the represen- 

tations learned by LSSL facilitate supervised classification by recording faster convergence and higher (or 

similar) prediction accuracy compared to several other representation learning techniques. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

A longitudinal study repeatedly measures the same variable 

o track a specific group of individuals over a period of time 

 Caruana et al., 2015 ). For example, longitudinal neuroimaging 

tudies are often used to evaluate the impact of age on the brain 

 Dennis and Cabeza, 2008 ), the relationship between risk factors 

nd development of disease ( Jack et al., 2008 ), and the outcomes 

f treatments over time ( Liu et al., 2010 ). A critical component 

f longitudinal studies is to apply data analysis approaches prop- 

rly modeling the complex correlations underlying the repeated 

easures, which are often characterized by a mixture of inter- 

ubject variance and intra-subject dependency. Popular analysis 

pproaches are mixed-effect models ( Bernal-Rusiel et al., 2013 ) and 

nalysis of variance (ANOVA) ( Cash et al., 2016 ), which can in- 

pect the influence of key factors (e.g., age or disease) on individ- 

al imaging measurements (e.g., cortical thickness of regions of in- 
∗ Corresponding author at: Department of Psychiatry & Behavioral Sciences, Stan- 
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erest) extracted from the longitudinal Magnetic Resonance images 

MRIs). However, this type of univariate analysis ignores the high- 

imensional relations across multiple brain regions ( Habeck and 

tern, 2010 ). With recent advances in deep learning, this limitation 

an be largely resolved by data-driven supervised learning, i.e., by 

raining models to predict the value of a set of factors (e.g., age 

r diagnosis group) for each subject directly from their raw images 

 Aghili et al., 2018 ). 

One limitation of supervised learning is that the training re- 

uires large amount of data with accurate labels, which is infea- 

ible for some neuroimaging applications. For example, prior stud- 

es have trained models to predict subjects’ age from their struc- 

ural MRIs to understand the effect of aging on brain morphom- 

try ( Smith et al., 2020; Zhao et al., 2019 ). However, such age-

ased supervision can be sub-optimal as the chronological age 

oes not always reflect the true condition of aging in the brain 

 Steffener et al., 2016 ). To resolve this issue, we propose here a 

ovel learning scheme that replaces the direct supervision with 

elf-supervision in the context of repeated measures. In general, 

elf-supervised learning ( Kolesnikov et al., 2019 ) aims to automat- 

cally generate supervisory signal by exploring similarity and dis- 

imilarity relations across samples through the learning process of 

https://doi.org/10.1016/j.media.2021.102051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102051&domain=pdf
mailto:kilian.pohl@stanford.edu
https://doi.org/10.1016/j.media.2021.102051
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heir representations. This concept aligns with the longitudinal de- 

ign, in which each subject serves as their own ‘comparison’ with 

espect to the change over time. Therefore, the repeated measures 

ould fully leverage the structured inter-relation across time points 

o learn time-dependent representations of MRIs. 

Another concept in representation learning that can be 

elated to the longitudinal design is factor disentanglement 

 Tschannen et al., 2018 ). The key intuition behind disentanglement 

s that real-world data have low-dimensional representations that 

re controlled by distinct and interpretable factors ( Higgins et al., 

018 ). Changing a single factor should thus lead to a change in a 

ingle dimension in the representation space. According to a recent 

ublication ( Locatello et al., 2018 ), factor disentanglement cannot 

e stringently formulated for cross-sectional data without explic- 

tly supervision. However, in a longitudinal study, where each in- 

ividual is repeatedly examined over time, all time-independent 

actors are fixed so that the impact of time-related factors, such 

s age, can be effectively revealed on the observations. In other 

ords, the study design of repeated measures fits perfectly to ‘su- 

ervising’ the disentanglement of the evolving factor across the 

easures. 

Inspired by these affinities, we propose a representation learn- 

ng strategy, named Longitudinal Self-Supervised Learning (LSSL), 

o investigate the impact of aging and neuropsychological disorders 

n the brain within the context of longitudinal MRIs. Thanks to the 

epeated measure design in longitudinal studies, we separately de- 

ne the space of factors and the representation space of MRIs and 

ormulate disentanglement in the context of multivariate mapping 

etween the two spaces. The factor of brain age is then disentan- 

led by self-supervision on the temporal order between the multi- 

le MRIs for each subject. The training uses this ordinal informa- 

ion to encourage the change of subject-specific representations to 

ollow a common developmental direction. This objective is con- 

ensed to optimizing a combination of image reconstruction loss 

f a standard autoencoder ( Chen et al., 2017 ) and a simple cosine

oss in the representation space. 

We test our model on a synthetic dataset and two longitudinal 

R data sets: one investigates the impact of Alzheimer’s Disease 

AD) on the brain and the other one of alcohol dependence. While 

he training does not rely on any ground-truth age nor diagnostic 

abels, LSSL successfully disentangles a factor in the representation 

pace linked to brain age, which is superior than the chronological 

ge in characterizing the health condition of the brain. In addition, 

SSL successfully reveals accelerated aging effects of AD and alco- 

ol dependence compared to the control cohort. When perform- 

ng a downstream task of predicting diagnosis labels of subjects, 

he representations and pre-trained encoder learned by our model 

esult in faster convergence and more (or equivalently) accurate 

lassification accuracy compared to several commonly used state- 

f-the-art unsupervised or self-supervised representation learning 

trategies. 

. Related work 

.1. Longitudinal neuroimaging studies 

Deep learning models applied to longitudinal neuroimaging 

tudies are largely based on supervised learning, i.e., by training 

lassification models based on image time series using regular re- 

urrent networks ( Lipton et al., 2015; Santeramo et al., 2018; Cui 

t al., 2019; Ghazi et al., 2019 ). Based on these models, longitudinal 

ooling is proposed to augment the learned representation of each 

ime point with information gathered from images of other time 

oints in the series ( Ouyang et al., 2021 ). Other methods for ex- 

licitly exploiting dependencies within the intra-subject series are 

enerally based on parameterizing the trajectories of representa- 
2 
ions in the latent space, such as using Mixed Effect Models ( Xiong 

t al., 2019; Louis et al., 2019 ). 

.2. Brain-age analysis 

The biological ‘brain age’ is a marker quantifying the health 

ondition of the brain and correlates with mental and physical fit- 

ess ( Steffener et al., 2016 ). To predict the brain age from struc- 

ural MRIs, recent publications ( Cole et al., 2016; Elliott et al., 2019; 

aufmann et al., 2019; Smith et al., 2020; Zhao et al., 2019 ) pro-

osed to train supervised learning models on a cohort of healthy 

ubjects with the prediction target being their chronological age. 

uch models can be built on imaging measurements ( Smith et al., 

020 ) or raw 3D images ( Zhao et al., 2019 ) and in both cross-

ectional ( Smith et al., 2020 ) and longitudinal settings ( Elliott et al.,

019 ). After training, the model can be applied to both healthy 

nd diseased subjects, and the difference between the predicted 

rain age and chronological age can be regarded as a pheno- 

ype related to the impact of the brain disorder on normal aging 

 Kaufmann et al., 2019 ). Despite the meaningful findings revealed 

n these studies, one common pitfall is the underlying assumption 

hat the chronological age exactly corresponds to the brain age, 

hich is challenged by several recent studies that show brain ag- 

ng is highly heterogeneous even within the healthy populations 

 Franke and Gaser, 2019 ). 

.3. Self-supervised learning 

To tackle the problem of missing or expensive-to-obtain 

round-truth labels required by supervised learning, self- 

upervised methods learn representations by training models 

n tasks that do not require explicit annotations or labels ( Jing and 

ian, 2019 ), such as image inpainting ( Zhang et al., 2016 ), col-

rization ( Larsson et al., 2017 ), super-resolution ( Dong et al., 2014; 

ohnson et al., 2016 ), and predicting spatial relationships between 

wo image patches from the same image ( Noroozi and Favaro, 

016; Sabokrou et al., 2019 ). Beyond these within-sample learning 

chemes, contrastive learning is a self-supervised approach that 

xplicitly models the relationships across samples, such as by 

istinguishing between similar and dissimilar images ( Chen et al., 

020 ), modeling temporal dependency across time ( van den Oord 

t al., 2018 ), and estimating depth from stereo images ( Pillai et al.,

019 ). Once trained, the resulting representations can be em- 

edded into supervised learning tasks, such as multi-task and 

ross-domain feature learning ( Doersch and Zisserman, 2017; Ren 

nd Lee, 2018 ), which result in a more efficient training with 

espect to labelled data and computational resources than training 

he supervised models from scratch ( Chen et al., 2020; He et al., 

019; Kolesnikov et al., 2019 ). 

.4. Factor disentanglement 

While there is no consensus on the mathematical definition of 

isentanglement , conceptually, a representation is considered dis- 

ntangled if changes along one dimension of the representation 

re explained by a specific factor of variation (e.g., age) while 

eing relatively invariant to other factors (e.g. gender, ethnicity) 

 Higgins et al., 2018 ). Most existing works formulate this notion 

rom a statistical perspective by pursuing statistical independence 

mong random variables in the latent space (factorizable latent 

epresentations Tschannen et al., 2018; Higgins et al., 2018 ). There- 

ore, state-of-the-art approaches for unsupervised disentanglement 

earning are based on a Variational Autoencoder (VAEs) structure, 

hich aims to learn a factorizable posterior from the marginal dis- 

ribution of the observed data ( Higgins et al., 2017; Chen et al., 

018; Kim and Mnih, 2018; Zhao et al., 2017 ). Despite promising 
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Fig. 1. Longitudinal Self-Supervised Learning (LSSL) aims to learn representations from observed images, which are assumed to be generated from a set of hidden factors. In 

this example, the variation of the repeated measures of two subjects (blue and red, t encodes the order of visits) is assumed to relate to an increase in brain age. LSSL then 

disentangles a 1D direction τ linked to brain age from the representation space such that the developmental trajectories of subject-specific representations z t are colinear 

with τ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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esults, the study by Locatello et al. (2018) challenges the theoret- 

cal validity of this idea. They point out that given any marginal 

istribution of the observed data, there exists an infinite number 

f generative processes from either disentangled or fully entan- 

led latent representations. Therefore, a true factor disentangle- 

ent requires supervision, for which we propose to perform self- 

upervision on repeated measures. 

. Longitudinal self-supervised learning 

We now first provide a new perspective of factor disentangle- 

ent by defining a multivariate mapping from a hidden factor 

pace underlying the observed images to a representation space 

earned from those images (see Fig. 1 ). This setup motivates us to 

efine a novel self-supervised objective function that does not de- 

end on the statistical property of the disentangled factor. We then 

mploy this formulation in the context of the repeated measures 

esign to disentangle brain age from longitudinal MRI data. 

.1. Disentangled mapping from factor to representation space 

Current unsupervised learning frameworks often define the 

oncept of disentanglement as the observed data having factoriz- 

ble distributions in the representation space, such that each rep- 

esentation variable corresponds to a real-world factor that is sta- 

istically independent from other variables ( Higgins et al., 2017 ). 

his learning objective is impractical because factors in real world 

atasets are not necessarily statistically independent. For exam- 

le, brain morphology is influenced by both gender and brain size, 

wo highly correlated factors. Thus, deriving a 2D representation 

f the underlying distribution could yield two statistically indepen- 

ent directions (such as with Principal or Independent Component 

nalysis), but the meaning of each direction with respect to real- 

orld factors would be unclear. To resolve this issue, we step away 

rom the statistical formulation and approach the disentanglement 

roblem from a pure algebraic perspective. Specifically, we propose 

o explicitly separate the concepts of the space of factors from the 

epresentation space. We do so by assuming images are generated 

y factors, and hence can be reduced to a low-dimensional repre- 

entation (see Fig. 1 ). We then are interested in the deterministic 

ultivariate mapping function between the two spaces as a means 

f disentanglement. 

To mathematically formulate such mappings, we denote �α = 

 

M as the factor space , and �I = R 

P the image space . We as-

ume each image I ∈ �I can be fully determined based on M

actors α := [ α1 , . . . , αM 

] ∈ �α through a differentiable generative 

rocess I = h ( α) . Further, we aim to learn a differentiable en- 

oder g (·) that reduces the image I to a K dimensional repre- 

entation z := [ z , . . . , z ] in the representation space �z , i.e., z =
1 K 

3 
 ( I ) ∈ �z and z i = g i ( I ) . We then define f : �α → �z as the com-

osite multivariate-to-multivariate mapping f := g ◦ h , where f = 

 f 1 , . . . , f K ] and each f i is a differentiable multivariate-to-univariate 

apping with z i := f i ( α) for i ∈ [1 , K] . 

Without loss of generality, we assume that z 1 is linked to the 

rst factor α1 . Let ˆ α := [ α2 , . . . , αM 

] , we then consider the factor

1 as disentangled within the representation z if f can be factor- 

zed such that 

 1 = f 1 (α1 ) with f 1 : R → R being strictly increasing, and 

z i = f i ( ̂  α) for i > 1 . (1) 

In other words, disentanglement is achieved when (1) z 1 is 

olely dependent on α1 (the monotonicity of f 1 ensures the map- 

ing to be bijective, i.e., without loss of information, and preserve 

rdinal information of factor z 1 ); and (2) the remaining represen- 

ation in z is solely dependent on factors other than α1 . 

.2. Self-supervised disentanglement 

In many applications, the only available data are a set of images 

 . The underlying generative process, including the mapping func- 

ion h , dimension of factor space M, and values of α are hidden 

rom observation, so training disentangled representation with re- 

pect to a specific factor can become extremely challenging. How- 

ver, in situations where each training sample has multiple images 

easured with respect to different values of a specific factor, we 

an leverage self-supervision to achieve disentanglement. To show 

his, the factorization of f in Eq. (1) can be transformed to the fol-

owing conditions: 

∂ f 1 
∂α1 

> 0 , and 

∂ f i 
∂α1 

= 0 , 
∂ f 1 
∂αi 

= 0 for i > 1 . (2) 

Based on the chain rule, the partial derivative of f i with respect 

o α j can be further transformed to a directional derivative with 

espect to the vector u j : 

 j = 

[
∂h 1 

∂α j 

, . . . , 
∂h P 

∂α j 

]
, (3) 

∂ f i 
∂α j 

= 

P ∑ 

p=1 

∂ f i 
∂h p 

∂h p 

∂α j 

= ∇ u j g i ( I ) . (4) 

Eq. (4) translates the problem setup on f and α to a setup with 

espect to g and I . Specifically, let u j be the change in the image 

pace after perturbing the value of α j by ε and I ′ := I + u j , then 

he corresponding change in z i can be defined as 

∂ f i 
∂α j 

≈ g i ( I 
′ ) − g i ( I ) 

ε
. (5) 



Q. Zhao, Z. Liu et al. Medical Image Analysis 71 (2021) 102051 

A

o

 

s

c

o

n

3

d

F

h

c

s

i

M

c

t

(

a

o

o

n

r

s

a

p

fi

t

l

d

r

d

t  

m

t

m

a

a  

e

f

t

w

t

p

t

w

φ
e

e

g

t

t

a

m
θ

w

t

d

o

τ

4

4

t

t

a

f

p

w

w

d

f  

s

i

o

p

c

o

a

t

s

(

(

I

D  

w

p

o  

c

a

u

z

t

y

i

t

a

c

4  

(  

f

g

E

w

i

v

t

s

e

c

m

w

2 Data publically available at http://adni.loni.usc.edu/ 
s such, the disentanglement defined by Eq. (2) is achieved if and 

nly if 

Condition 1: Upon perturbation of α1 , g ( I ′ ) − g ( I ) is co-linear

with [1 , 0 , . . . , 0] ; 

Condition 2: Upon perturbation of αi for i > 1 , g 1 ( I 
′ ) − g 1 ( I ) = 0 . 

In other words, to disentangle α1 from the representation 

pace, one should optimize for an encoder g such that the two 

onditions apply to the representations of all pairs of images. This 

bjective is self-supervised as we only need to pair the images but 

ot to provide the true values of the factor. 

.3. Studying brain aging via longitudinal MRIs 

As mentioned, brain age characterizes the apparent health con- 

ition of the brain but not necessarily equals chronological age. 

or example, a patient with neurodegenerative disease can have a 

igher brain age than a healthy subject albeit they have the same 

hronological age ( Elliott et al., 2019; Kaufmann et al., 2019 ). This 

ection describes how to leverage the prior self-supervised learn- 

ng model to disentangle brain age from longitudinal structural 

RIs. 

To do so, we assume that brain age is the dominant factor that 

hanges the brain morphology of an individual across the longi- 

udinal scans while the other genotypic and demographic factors 

such as gender and ethnicity) are static over time. Based on this 

ssumption, Condition 2 is omitted from the following analysis as 

ne can not ‘perturb’ those static factors to examine their influence 

n the image representations in a longitudinal design. As such, we 

ow present the Longitudinal Self-Supervised Learning (LSSL) algo- 

ithm that performs disentanglement guided by Condition 1. 

Let I be the collection of all MR images and S be the set of 

ubject-specific image pairs; i.e., S contains all 
〈
I t , I s 

〉
such that I t 

nd I s are from the same subject with I t scanned before I s . To ap- 

ly Condition 1 to disentangle brain age from an image pair, we 

rst assume that the small increase of brain age between the two 

ime points corresponds to the perturbation of α1 . Next, we re- 

ax the colinearity constraint of Condition 1 that the disentangled 

irection has to align with the first natural coordinate axe in the 

epresentation space (i.e., [1,0,...,0]). Instead, we parameterize the 

irection linked to brain age as a free-form 1D unit vector τ ∈ �z 

hat can be jointly learned during training ( Fig. 1 ). This strategy is

otivated by the findings of Rolinek et al. (2018) , which suggest 

hat the encoder network by itself does not have the capacity to 

odel arbitrary rotations of the representation space. 

In doing so, the brain age associated with the two images, ψ 

t 

nd ψ 

s , can be defined as the projections of the corresponding im- 

ge representations to τ, e.g., ψ 

t = g ( I t ) 	 τ = z t 
	 
τ ( Fig. 1 ). Then,

nsuring Condition 1 while preserving ψ 

s > ψ 

t is equivalent to en- 

orcing cos 
(
g ( I s ) − g ( I t ) , τ

)
= 1 , i.e., a zero-angle between τ and 

he direction of progression in the representation space. In other 

ords, while the location of z t can be arbitrary in the represen- 

ation space, the change of image representation between time 

oints z s − z t is only allowed in the τ direction. 

To learn an encoder g that satisfies the cosine constraint, we 

rain a standard autoencoder that models g as a neural network 

ith parameters θ and simultaneously determines the parameters 

of a decoder network d to reconstruct the input image from the 

ncoded representation. In doing so, the learned representations 

ncode all morphological information of the brain beyond the sin- 

le factor of interest. To impose the cosine constraint in the au- 

oencoder, we propose to add a cosine loss for each image pair to 

he standard Mean-Squared Error loss MSE( ·, ·) of the autoencoder 

s a soft constraint, i.e, 

in 
,φ, τ

∑ 

I ∈I 
MSE ( I , d ( g ( I ; θ ) ;φ) ) − λ

∑ 

〈 I t , I s 〉 ∈S 
cos 

(
g ( I s ; θ ) − g ( I t ; θ ) , τ

)
, (6) 
4 
ith λ being the parameter weighting the two terms. As a result, 

he objective function encourages the encoder to learn the low- 

imensional representation of images while encouraging the devel- 

pment of brain representation of all subjects to be colinear with 

. 

. Experiments 

.1. Experimental setup 

Datasets We evaluated the proposed LSSL on a synthetic and 

wo longitudinal neuroimaging datasets. The synthetic dataset con- 

ained 512 subjects. Each subject consisted of an image pair I 1 

nd I 2 , whose difference was regarded as the developmental ef- 

ect over time. Either image in the pair contained four Gaussian 

atterns ( Fig. 3 (a)). The magnitude of the two diagonal Gaussians 

ere randomly sampled from a uniform distribution U(1 , 6) and 

as kept the same for the pair. The magnitude of the two off- 

iagonal Gaussians simulated the ‘brain age’, which was sampled 

rom ψ ∼ U(1 , 4) in the first image and set to ψ + 
ψ for the

econd image with 
ψ ∼ U(0 . 1 , 2) being the age-related increase 

n magnitude between the two images ( Fig. 3 (a)). Gaussian noise 

f SNR = 8 was added to each image. Training on the 512 image 

airs, the goal of the synthetic experiment was to show that LSSL 

an disentangle a direction τ in the latent space encoding the 

ff-diagonal developmental pattern and that the estimated brain 

ge ψ (projections along τ) accurately correlates with the ground- 

ruth ψ . 

Next, we evaluated LSSL on the 2641 structural MRIs of 811 

ubjects from the Alzheimer’s Disease Neuroimaging Initiative 

ADNI1 2 ). The dataset consisted of 229 normal control subjects 

age: 76 ± 5 . 0 years), 397 subjects diagnosed with Mild Cognitive 

mpairment ( 74 . 9 ± 7 . 4 years), and 185 subjects with Alzheimer’s 

isease ( 75 . 3 ± 7 . 6 years). The longitudinal MRI of each subject

as composed of up to 8 scans (acquired within a 4 year study 

eriod) that we were able to successfully preprocess. In line with 

ur prior studies ( Adeli et al., 2020; Zhao et al., 2020 ), the prepro-

essing consisted of denoising, bias field correction, skull striping, 

ffine registration to a template, re-scaling to a 64 × 64 × 64 vol- 

me, and transforming image intensities within the brainmask to 

-scores. We constructed 3141 image pairs based on the criteria 

hat each pair belonged to the same subject and had at least one 

ear interval in scan time. 

Another neurological disorder known to accelerate brain aging 

s alcohol dependence, which can cause gradual deterioration in 

he gray and white matter tissue ( Pfefferbaum et al., 2014; Zahr 

nd Pfefferbaum, 2018 ). Therefore, the second MRI dataset was 

omprised of 1499 T1-weighted MRIs of 274 Normal Controls (age: 

7 . 3 ± 17 . 6 ) and 329 patients diagnosed with alcohol dependence

age: 49 . 3 ± 10 . 5 ) according to the DSM-IV criteria ( Bell, 1994 ) (re-

erred to as the alcohol data set). 74 participants of the alcoholic 

roup were also human immunodeficiency virus (HIV) positive. 

ach subject had up to 13 longitudinal scans. 1071 image pairs 

ere constructed from this dataset based on the above one-year- 

nterval criterion. The study was approved by the institutional re- 

iew boards of Stanford University School of Medicine and SRI In- 

ernational. All MRIs were pre-processed using the prior pipeline. 

Implementation of LSSL As LSSL is a formulation on latent repre- 

entations (which is not specific to any design of the decoder d and 

ncoder g ), we constructed rather simplistic and standard autoen- 

oders so that findings revealed herein are likely to generalize to 

ore advanced autoencoder structures. For the synthetic dataset, 

e designed the encoder of LSSL as 3 stacks of 3 × 3 convolution 

http://adni.loni.usc.edu/
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Fig. 2. Network structure of LSSL. Orange blocks correspond to the encoder and blue blocks to the decoder networks. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 3. (a) A synthetic image pair representing a subject’s developmental effects, which were quantified by the magnitude change 
φ of the two off-diagonal Gaussians; (b) 

R2 between estimated and ground-truth φ with respect to noise level; (c) Group-level correlation for SNR = 0.125. Each line connects two points associated with an image 

pair; (d) Identified developmental patterns for SNR = 0.125. 
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ith feature dimension { 2 , 4 , 8 } , tanh activation, and max-pooling

ayers, which resulted in a 16 dimensional representation. The de- 

oder employed a reverse structure of the encoder. The unit vec- 

or τ was embedded in the network as the output of a fully con- 

ected layer applied to a dummy input scalar ( Fig. 2 ), which made

a global variable and independent of the specific input image. 

or the MRI datasets, the encoder was 4 stacks of 3 × 3 × 3 convo- 

ution with dimension { 16 , 32 , 64 , 16 } , ReLU activation, and max-

ooling layers ( Fig. 2 ). A fully connected layer resulted in a 512

imensional representation space. 

For each dataset, we set a non-informative hyperparameter λ as 

he ratio between the number of images ( |I| ) and the number of 

mage pairs ( |S| ) to balance the number of samples in the two loss

erms ( Eq. (6) ). This ratio resulted in a reasonable balance between 

he two loss components in the objective function (see Supplement 

ig. S3). 
5 
We trained the models for 100 epochs using an Adam optimizer 

ith an initial learning rate of 0.001. In the MR experiments, we 

educed the learning rate by a factor of 0.2 if the training loss 

topped decreasing for 5 epochs. We confirmed convergence based 

n the train loss curve in all experiments. The models were im- 

lemented in Keras 2.2.4 and ran on an Nvidia Quadro P60 0 0 GPU 

ith 2 GB memory. Each training run in the MR experiments took 

pproximately 2–4 h. 

Evaluation on the MR datasets For each dataset, we first trained 

SSL on the collection of image pairs (subjects with only one MR 

ere omitted from training) and applied the trained model to de- 

ive the brain age ψ (projections along τ) for all the MRIs in the 

ataset. Note, the ground-truth diagnosis labels and the chronolog- 

cal age were omitted from the self-supervised training. Then, the 

stimated brain age was correlated with chronological age in the 

ontrol subjects to verify the quality of disentanglement. The brain 
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ge of control subjects was compared to that of the diagnosed 

atients to reveal disease effects. Note, this type of analysis was 

nique to LSSL and could not be achieved by existing disentangle- 

ent approaches based on statistical formulation (e.g., Kingma and 

elling, 2014; Higgins et al., 2017; van den Oord et al., 2018; Chen 

t al., 2020 ) because those methods do not estimate latent direc- 

ions associated with underlying factors. 

LSSL also learned a representation vector for each MRI. We eval- 

ated the quality of these representations by using them to classify 

iagnosis labels of individuals in a supervised setting. The classi- 

cation was evaluated by 5-fold cross-validation, where the folds 

ere split based on subjects; i.e., images of a single subject be- 

onged to the same fold. After splitting folds, we performed the 

lassification using both cross-sectional (i.e., based on single time 

oints) and longitudinal models. The cross-sectional model dis- 

arded the temporal information within each subject and treated 

ach image as an independent sample. The classifier was designed 

s a Multi-Layer Perceptron containing two fully connected layers 

f dimension 512 and 64 with ReLU activation. The longitudinal 

odel was a Recurrent Neural Network (RNN), whose input was 

he longitudinal sequence of representation vectors for each sub- 

ect. The RNN mapped each representation vector within the input 

equence to a 16 dimensional vector, which was fed into a sin- 

le layer GRU network with 16 hidden units ( Ouyang et al., 2021 )

o predict the diagnosis label at each visit. In a separate experi- 

ent, we fine-tuned the LSSL representation by incorporating the 

ncoder g (pre-trained by LSSL) into the classification models and 

hen cross-validated this end-to-end classifier. Classification accu- 

acy was measured by balanced accuracy (bAcc) to account for dif- 

erent number of samples in each cohort ( Zhao et al., 2020 ). 

Baselines We compared the classification accuracy and speed of 

onvergence of the end-to-end classifier to those whose encoders 

ere pre-trained by several other state-of-the-art representation 

earning methods. For fair comparison, we used the same encoder 

rchitecture for all methods, as our goal was to show the supe- 

iority of our self-supervised representation learning rather than 

btaining state-of-the-art results on any of the two datasets with 

ore complex encoder architectures. As LSSL was conceptually re- 

ated to a wide range of works, we selected several representative 

ethods from unsupervised training (AE and VAE), factor disen- 

anglement ( β-VAE Higgins et al., 2017 ), self-supervised learning 

SimCLR Chen et al., 2020 ), to a longitudinal framework based on 

ontrastive Predictive Coding (CPC van den Oord et al., 2018 ). Note, 

he pre-training of CPC already contained an auto-regressive model 

n top of the encoder, which reduced the representation to ‘con- 

ext’ features, i.e., a 16-D vector followed by a GRU with 16 hidden 

nits. Therefore, the longitudinal prediction of CPC was directly 

ased on the context features instead of the 512-D representation. 

.2. Results of synthetic experiments 

We trained LSSL on the 512 image pairs and derived the brain 

ge ψ for each synthetic image. As the scale of the coordinates in 

he latent space is not uniquely determined (one can rescale the 

atent space by rescaling the network parameters of the encoder 

nd decoder), we normalized ψ such that its mean and standard 

eviation were matched to those of the ground truth. Note, this 

ormalization was solely for intuitive interpretation of the results. 

ext, we quantified the correlation between the ground-truth and 

stimated ψ by the R2 score ( Da Costa Lewis, 2005 ). Fig. 3 b indi-

ates that this correlation was nearly perfect ( R 2 = 0 . 99 ) for a high

NR = 8 and remained high for a low SNR = 0.125. This global

orrelation in the range of ψ ∈ [1 , 6] was learned from pairs of

ata whose maximum difference in brain age 
ψ ≤ 2 ( Fig. 3 c). To

dentify the spatial pattern associated with increasing brain age, 

e varied the average latent representation z̄ (across all images) 
6 
long τ and −τ by one unit and visualized the resulting difference 

etween the two reconstructed images: 

 ( ̄z + τ;φ) − d ( ̄z − τ;φ) (7) 

he resulting image ( Fig. 3 d) shows that LSSL accurately estimated 

he developmental pattern in the two off-diagonal Gaussians even 

or the low SNR setting. 

.3. Longitudinal study of Alzheimer’s disease 

We trained LSSL on the 3141 pairs of MRIs from ADNI and then 

pplied the model to derive the brain age ψ for all 2641 MRI in 

he dataset. The mean and standard deviation of the estimated ψ
ere normalized according to the chronological age in the dataset. 

ig. 4 a shows the brain age of the control subjects versus their 

hronological age. According to the fitting of a quadratic mixed ef- 

ect model, brain age and chronological age exhibited a nearly lin- 

ar relationship over the entire age span of the dataset. To ensure 

his correlation was not a result of model overfitting, we measured 

he Pearson’s correlation only on the 43 control MRIs that were 

ot a part of the training set (see Supplement Fig. S4). The ‘global’ 

orrelation in the range of 60 to 90 years was derived solely from 

he ordinal information from subject-specific image pairs (maxi- 

um 4 years part) without using the ground-truth chronological 

ge of subjects. 

Next, we qualitatively show that the estimated ψ was a more 

ccurate marker for brain age compared to the chronological age. 

ig. 5 a displays the brain of 7 normal control subjects with the 

ame chronological age (of 80 years), yet their estimated brain age 

anged from 62.9 years to 92.5 years. This large variance visually 

elates to the difference in ventricle size and cortical thickness 

hown in Fig. 5 a. It is also consistent with the variance of brain

ge plotted in Fig. 4 a for any given chronological age. On the other 

and, control subjects with the same estimated brain age shown in 

ig. 5 b had similar brain appearance despite that they had various 

hronological age. These results not only support the efficacy of 

ur brain age estimation but also suggest that supervised training 

ased on chronological age may be a flawed strategy for learning 

he brain age even within the control cohort. 

According to Fig. 4 b, the brain age of AD patients was gener- 

lly higher than chronological age reflecting the neurodegenerative 

ature of AD that accelerated brain aging. This phenomenon can 

lso be inferred from Fig. 4 c, where we computed the ‘brain age 

lope’ by fitting a simple linear regression for each subject (with 

t least 2 images) on their brain age across visits. In doing so, 

e see that the control group had an average aging speed (slope) 

lose to 1, indicating the consistency between the progression rate 

f brain age and of chronological age. In comparison, brain aging 

f the AD group was significantly faster ( p < 0 . 001 , two-sample

-test). Interestingly, the MCI group, representing a transitional 

tate between control and AD, had an intermediate aging speed, 

hich was significantly faster than normal and slower than AD 

 p < 0 . 001 , two-sample t-tests). Moreover, we observe that the gap

etween brain age and chronological age was larger in younger AD 

atients than the older ones ( Fig. 4 b), which indicates the disease 

ffect was more prominent in the younger brain. This phenomenon 

as quantitatively supported by fitting a linear regression between 

he aging speed (slope) and age in each cohort ( Fig. 4 d). While

he AD subjects had more accelerated aging at younger ages, their 

ging speed was not different from that of the oldest old in the 

ontrol cohort. Again, the MCI group exhibited an intermediate ef- 

ect between AD and control subjects. Lastly, to ensure that these 

esults were not specific to the resolution of input images, we re- 

eated the above experiments based on the 80 × 80 × 80 input res- 

lution, which resulted in similar findings (Supplement Fig. S1). 
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Fig. 4. (a) Brain age of 229 control subjects from ADNI1; (b) Brain age of 185 AD patients (red) overlaid with normal developmental trajectory (blue); (c) Speed of brain 

aging (slope of ψ over time) for the 3 diagnosis groups and (d) as a function of chronological age of the ADNI1 subjects. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 5. (a) Control subjects with the same chronological age of 80 years had distinct brain appearance and brain age estimated by LSSL. (b) Control subjects with the same 

brain age of 80 years exhibited similar brain appearance. 
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We also assessed the quality of disentanglement by simulating 

he average brain at different brain ages. We constructed the aver- 

ge representation associated brain age ψ via 

 τ + 

1 

N 

N ∑ 

i =1 

(
z i − z i τ	 τ

)
, (8) 

here the first term corresponds to the representation of brain age 

nd the second term captures factors independent from brain age, 

.e., the group average of the components orthogonal to τ . By de- 

oding this age-dependent representation, we observe a pattern of 

nlargement in the ventricle and loss of brain tissues as age in- 

reases ( Fig. 6 ). This pattern converges with the current under- 

tanding of brain aging in the neuroscience literature ( Sullivan and 

fefferbaum, 2008 ). 
7 
Lastly, we classified AD patients from control subjects based 

n the learned representations. In the cross-sectional setting, the 

epresentations learned by LSSL enabled more accurate predic- 

ion than the baselines except for SimCLR ( Table 1 CNN), and 

he bAcc of our model closely matched up to SimCLR after fine- 

uning the encoder in the cross-sectional setting. On the other 

and, when performing classification based on the longitudinal se- 

uences (CNN + RNN), the bAcc associated with the LSSL repre- 

entations increased and outperformed all baselines, which was 

lso the case after fine-tuning the encoders. This accuracy im- 

rovement over cross-sectional CNN indicates that LSSL resulted 

n informative temporal trajectories of individuals in the represen- 

ation space, which could only be learned by the RNN models. 

oreover, when performing the fine-tuning in an end-to-end set- 
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Fig. 6. Simulated average brain at different brain ages from the ADNI and alcohol data. 

Fig. 7. ADNI Dataset - Average bAcc in the first 45 epochs over the 5 testing folds when training end-to-end classification based on pretrained encoders. 

Table 1 

ADNI data set: balanced accuracy (bAcc) of cross-sectional and longitudinal classifi- 

cation with and w/o fine-tuning the encoder. Best result in each column is in bold 

and the second best is underlined. 

ADNI 

Pre-training CNN CNN + RNN 

Model frozen / fine-tuned frozen / fine-tuned 

No pretrain / 80.6 / 74.6 

AE 58.6 / 81.7 62.1 / 71.3 

VAE ( Kingma and Welling, 2014 ) 58.9 / 75.7 62.8 / 71.9 

β-VAE ( Higgins et al., 2017 ) 56.1 / 77.2 76.3 / 78.4 

SimCLR ( Chen et al., 2020 ) 78.0 / 84.4 80.7 / 84.7 

CPC ( van den Oord et al., 2018 ) 65.5 / 78.6 66.7 / 80.4 

Ours (LSSL) 72.0 / 84.1 81.8 / 87.0 
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ing, the encoder pre-trained by LSSL converged the fastest in both 

ross-sectional and longitudinal settings (see Fig. 7 ) despite that all 

ethods started from random predictions (as the MLP layers were 

andomly initialized). When using the most accurate implementa- 

ion (LSSL + RNN + fine-tuning), the bAcc for distinguishing MCI 

rom controls (69.9%) and AD (69.5%) were also higher than those 

ithout pretraining of LSSL (68.3% and 66.5%). Note, the classifi- 

ation accuracies are in line with the literature ( Oh et al., 2019 ),

hich ranges from 60% to 75% bAcc depending on the progressive- 

ess of the MCI subjects used for classification. 

.4. Longitudinal study of alcohol dependence 

Similar to the previous experiment, we first trained LSSL to esti- 

ate the brain age for all MR images and then visualized the brain 

ge of the control subjects ( Fig. 8 a). To put the results in line with
8 
he ADNI experiments, we normalized the projection ψ with re- 

pect to the age range of the ADNI dataset (i.e., confined to 60 

o 90 years and then applied to the entire age range of the al- 

ohol data set, Fig. 8 a). Compared to the approximately linear ag- 

ng pattern between age 60 to 90, the aging of the control sub- 

ects exhibited a quadratic pattern over a longer life span, where 

he aging speed was slower for younger subjects (e.g., between 

0 and 60 years) compared to the older subjects (after 60 years, 

ig. 8 a). Similar to the ADNI experiment, the alcoholics also exhib- 

ted higher brain age than normal controls ( Fig. 8 b), which was 

upported by their slopes (aging speed) being significant larger 

han normal ( p < 0 . 001 , Fig. 8 c). Different from the ADNI exper-

ment was that the aging speed of alcohol-dependent subjects was 

lways faster than normal controls regardless of their chronologi- 

al age ( Fig. 8 d). Furthermore, older subjects had a larger gap be- 

ween brain and chronological age ( Fig. 8 b), which indicates an ac- 

umulative alcohol effect. The accumulative alcohol effect is also 

upported by the observation that chronic drinking gradually de- 

eriorates brain structure resulting in more severe alcohol effect in 

lder subjects ( Zhao et al., 2019b ). 

In Fig. 6 , we simulated images of different brain ages for the al- 

ohol dataset. We observe that the simulated brains closely mimic 

he ones from the ADNI experiment from age 60 to 70, a range 

here the two datasets highly overlap. However, the simulated 

rains from the alcohol experiment showed less pronounced aging 

ffect after age 70 compared to the ADNI results. This was poten- 

ially due to the few older subjects in the alcohol dataset compared 

ith ADNI, so the model conservatively extrapolated the aging pat- 

ern for the older age range. 

Prior literature indicates that alcohol dependence is only 

eakly separable from the control group ( Adeli et al., 2018; 
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Fig. 8. (a) Brain age of 274 normal control subjects from the alcohol dataset (blue) overlaid with the ADNI1 controls (gray); (b) Brain age of 329 alcohol-dependent subjects 

(red); (c,d) Speed of brain aging for all subjects with two or more images in the alcohol data set. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Table 2 

Alcohol dataset: balanced accuracy (bAcc) of cross-sectional and longitudinal 

classification with and w/o fine-tuning the encoder. Best result in each column 

has bold typeset, and the second best is underlined. 

Alcohol dependence 

Pre-training CNN CNN + RNN 

Model frozen/fine-tuned frozen/fine-tuned 

No pretrain / 69.5 / 52.8 

AE 58.8 / 69.1 52.1 / 53.2 

VAE ( Kingma and Welling, 2014 ) 55.4 / 70.2 63.0 / 65.6 

β-VAE ( Higgins et al., 2017 ) 52.1 / 67.5 60.8 / 61.0 

SimCLR ( Chen et al., 2020 ) 63.2 / 68.7 66.2 / 69.3 

CPC ( van den Oord et al., 2018 ) 51.9 / 67.5 62.0 / 63.2 

Ours (LSSL) 62.9 / 71.7 67.0 / 72.0 
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uyang et al., 2021 ), which is echoed in our results by the sig-

ificantly lower bAcc in the frozen setting (all methods < 65 %, 

able 2 ) compared to the ADNI experiment. Nevertheless, all ac- 

uracy scores associated with LSSL were significantly better than 

hance based on the Fisher’s exact test ( p < 0 . 001 ). Moreover, LSSL

esulted in the fastest converging rate and highest accuracy upon 

onvergence in the fine-tuning setting compared to the baselines 

 Fig. 9 ). The more challenging task of classifying alcohol depen- 

ence compared to the AD classification also took the RNN longer 

o converge for several baselines, which was not the case for LSSL. 

. Discussion 

In recent years, many studies have used supervised models to 

stimate brain age from structural MRIs. These models have to be 

rained on a healthy population to predict chronological age to es- 

ablish the normal association between brain age and brain struc- 

ures ( Kaufmann et al., 2019; Smith et al., 2020; Zhao et al., 2019 ).

hen the trained model is applied to a diseased cohort to exam- 

ne the brain age gap (difference between the estimated brain age 
9 
nd chronological age) induced by the disease ( Kaufmann et al., 

019 ). This gap, however, is likely to be biased by the ‘domain 

hift’ between the training and testing sets. LSSL alleviates this is- 

ue by training on both control and diseased subjects (without us- 

ng their labels), which results in an analysis impartial to cohort 

ias. Moreover, the chronological age is a sub-optimal ground-truth 

or brain age in supervised models as there are multiple modes of 

rain aging within the healthy population due to genetic influence 

 Smith et al., 2020 ) (see also Fig. 5 ). LSSL addresses this challenge

y omitting the supervision of chronological age and only using or- 

inal information of within-subject scans, which permits the char- 

cterization of heterogeneity across subjects. 

The advantage of LSSL over other unsupervised/self-supervised 

aselines is evident from our post-hoc classification, which re- 

ealed LSSL could learn discriminative cues within the represen- 

ations even without using the group labels for training. However, 

he AD classification of LSSL did not rival with the highest accu- 

acy score reported on the ADNI dataset ( Liu et al., 2017; 2019 ),

hich was expected as we refrained from extensively exploring 

etwork architectures for the encoder. This type of exploration is 

 research direction orthogonal to the proposed self-supervised 

earning strategy in the representation space. This self-supervised 

earning strategy outperformed the baselines, all of which used 

he same encoder setting. The setting was based on the most ba- 

ic components used in standard CNNs (convolution, ReLU, and 

ax-pooling). Therefore, we expect the findings revealed herein 

re likely to generalize to more advanced encoder architectures. 

Limitation As longitudinal studies are typically designed to ex- 

mine the influence from time-dependent factors, we did not 

odel Condition 2 , i.e., the independence between ψ and other 

tatic factors, such as gender. This theoretically makes LSSL only 

esult in a necessary condition for disentanglement. In practice, we 

an examine whether Condition 2 holds via post-hoc analyses. For 

xample, in both experiments, the speed of brain aging was not 

ignificantly different between males and females ( p > 0 . 05 two- 
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Fig. 9. Average accuracy in the first 45 epochs for classifying alcohol dependence. 
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ided two-sample t-test) indicating an exact disentanglement be- 

ween brain age and gender. 

Another limitation of LSSL is that it does not eliminate the pos- 

ible confound by other time-evolving factors co-occurring with 

rain age. For example, the change of body mass index between 

isits can also alter the overall brain volume and thereby the im- 

ge representation ( Ward et al., 2005 ). Although our pipeline could 

educe the impact of the change in brain volume by affinely reg- 

stering each scan of the longitudinal MR images to a template, 

 systematic way of modeling confounders during the training of 

SSL needs to be further explored. 

Finally, the current formulation of LSSL can only disentangle 

ne time-variant factor related to brain age. This constraint limited 

ur analysis to focus on abnormalities in brain age due to a neuro- 

ogical condition (such as AD). To model other disease effects not 

elated to accelerated aging, a future research direction of LSSL is 

o jointly disentangle two orthogonal directions in the latent space 

o that one could separately characterize disease progression and 

rain aging. 

. Conclusion 

In this work, we proposed a self-supervised representation 

earning framework called LSSL that incorporated theoretical ad- 

antages from the repeated measures design in longitudinal neu- 

oimaging studies. The explicit longitudinal self-supervision per- 

itted separate definitions for the factor and representation 

paces, thereby omitting the ambiguity often encountered in fully 

nsupervised disentanglement models. Based on optimizing the 

olinearity between a global direction in the representation space 

nd the developmental trajectories from subject-specific image 

airs, LSSL successfully disentangled the factor of brain aging in 

he representation space, which was used to characterize nor- 

al aging pattern across the life span and to reveal the acceler- 

ted aging effects of Alzheimer’s Disease and alcohol dependence. 

ompared to several other state-of-the-art representation learning 

ethods, the pre-trained encoder and representations learned by 

SSL are more suitable for supervised classification of diagnosis la- 

els in various settings, indicated by faster convergence and higher 

or equally high) prediction accuracy upon convergence. 
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